相称性是一个有吸引力的公平概念,已应用于一系列问题,包括设施位置问题,这是社交选择中的经典问题。在我们的工作中,我们提出了一个称为强比例的概念,该概念可确保当不同位置有两组代理时,两组都会产生相同的总成本。我们表明,尽管强度比例是一个充分动机且基本的公理,但没有确定性的策略性防护机制来满足该财产。然后,我们确定一种称为随机排名的随机机制(该机制均匀地选择了$ k $在$ 1 $到$ n $之间的数字$ k $,并在$ k $'的第一个最高代理位置定位该设施),可以满足预期的强烈比例。我们的主要定理将随机列表描述为实现普遍真实,普遍匿名性和强烈比例的独特机制,在所有随机机制之间的期望中。最后,我们通过平均范围的机制证明,可以通过削弱预期的普遍真实性来实现更强大的前柱公平保证。
translated by 谷歌翻译
我们专注于简单,一维的集体决策问题(通常被称为设施位置问题),并探索战略防护和比例公平的问题。我们为满足战略防护和不同程度的比例公平程度的机制提出了几种特征结果。我们还将其中一个机制描述为满足自然公平性和单调性性质的任何机制的独特均衡结果。最后,我们确定了战略和按比例公平机制,提供了满足相应公平公理的所有机制中的最佳福利最佳逼近。
translated by 谷歌翻译
We present temporally layered architecture (TLA), a biologically inspired system for temporally adaptive distributed control. TLA layers a fast and a slow controller together to achieve temporal abstraction that allows each layer to focus on a different time-scale. Our design is biologically inspired and draws on the architecture of the human brain which executes actions at different timescales depending on the environment's demands. Such distributed control design is widespread across biological systems because it increases survivability and accuracy in certain and uncertain environments. We demonstrate that TLA can provide many advantages over existing approaches, including persistent exploration, adaptive control, explainable temporal behavior, compute efficiency and distributed control. We present two different algorithms for training TLA: (a) Closed-loop control, where the fast controller is trained over a pre-trained slow controller, allowing better exploration for the fast controller and closed-loop control where the fast controller decides whether to "act-or-not" at each timestep; and (b) Partially open loop control, where the slow controller is trained over a pre-trained fast controller, allowing for open loop-control where the slow controller picks a temporally extended action or defers the next n-actions to the fast controller. We evaluated our method on a suite of continuous control tasks and demonstrate the advantages of TLA over several strong baselines.
translated by 谷歌翻译
This dissertation reports some first steps towards a compositional account of active inference and the Bayesian brain. Specifically, we use the tools of contemporary applied category theory to supply functorial semantics for approximate inference. To do so, we define on the `syntactic' side the new notion of Bayesian lens and show that Bayesian updating composes according to the compositional lens pattern. Using Bayesian lenses, and inspired by compositional game theory, we define categories of statistical games and use them to classify various problems of statistical inference. On the `semantic' side, we present a new formalization of general open dynamical systems (particularly: deterministic, stochastic, and random; and discrete- and continuous-time) as certain coalgebras of polynomial functors, which we show collect into monoidal opindexed categories (or, alternatively, into algebras for multicategories of generalized polynomial functors). We use these opindexed categories to define monoidal bicategories of cilia: dynamical systems which control lenses, and which supply the target for our functorial semantics. Accordingly, we construct functors which explain the bidirectional compositional structure of predictive coding neural circuits under the free energy principle, thereby giving a formal mathematical underpinning to the bidirectionality observed in the cortex. Along the way, we explain how to compose rate-coded neural circuits using an algebra for a multicategory of linear circuit diagrams, showing subsequently that this is subsumed by lenses and polynomial functors. Because category theory is unfamiliar to many computational neuroscientists and cognitive scientists, we have made a particular effort to give clear, detailed, and approachable expositions of all the category-theoretic structures and results of which we make use.
translated by 谷歌翻译
Transformers have proved to be very effective for visual recognition tasks. In particular, vision transformers construct compressed global representations through self-attention and learnable class tokens. Multi-resolution transformers have shown recent successes in semantic segmentation but can only capture local interactions in high-resolution feature maps. This paper extends the notion of global tokens to build GLobal Attention Multi-resolution (GLAM) transformers. GLAM is a generic module that can be integrated into most existing transformer backbones. GLAM includes learnable global tokens, which unlike previous methods can model interactions between all image regions, and extracts powerful representations during training. Extensive experiments show that GLAM-Swin or GLAM-Swin-UNet exhibit substantially better performances than their vanilla counterparts on ADE20K and Cityscapes. Moreover, GLAM can be used to segment large 3D medical images, and GLAM-nnFormer achieves new state-of-the-art performance on the BCV dataset.
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
Assigning qualified, unbiased and interested reviewers to paper submissions is vital for maintaining the integrity and quality of the academic publishing system and providing valuable reviews to authors. However, matching thousands of submissions with thousands of potential reviewers within a limited time is a daunting challenge for a conference program committee. Prior efforts based on topic modeling have suffered from losing the specific context that help define the topics in a publication or submission abstract. Moreover, in some cases, topics identified are difficult to interpret. We propose an approach that learns from each abstract published by a potential reviewer the topics studied and the explicit context in which the reviewer studied the topics. Furthermore, we contribute a new dataset for evaluating reviewer matching systems. Our experiments show a significant, consistent improvement in precision when compared with the existing methods. We also use examples to demonstrate why our recommendations are more explainable. The new approach has been deployed successfully at top-tier conferences in the last two years.
translated by 谷歌翻译
数据质量是发展医疗保健中值得信赖的AI的关键因素。大量具有控制混杂因素的策划数据集可以帮助提高下游AI算法的准确性,鲁棒性和隐私性。但是,访问高质量的数据集受数据获取的技术难度的限制,并且严格的道德限制阻碍了医疗保健数据的大规模共享。数据合成算法生成具有与真实临床数据相似的分布的数据,可以作为解决可信度AI的发展过程中缺乏优质数据的潜在解决方案。然而,最新的数据合成算法,尤其是深度学习算法,更多地集中于成像数据,同时忽略了非成像医疗保健数据的综合,包括临床测量,医疗信号和波形以及电子保健记录(EHRS)(EHRS) 。因此,在本文中,我们将回顾合成算法,尤其是对于非成像医学数据,目的是在该领域提供可信赖的AI。本教程风格的审查论文将对包括算法,评估,局限性和未来研究方向在内的各个方面进行全面描述。
translated by 谷歌翻译
气道分割对于检查,诊断和预后的肺部疾病至关重要,而其手动描述则不当。为了减轻这种耗时且潜在的主观手动程序,研究人员提出了从计算机断层扫描(CT)图像自动分割气道的方法。但是,一些小型气道分支(例如,支气管和终末支气管)显着加剧了通过机器学习模型的自动分割难度。特别是,气道分支中体素值和严重的数据失衡的方差使计算模块容易导致不连续和假阴性预测。注意机制表明了分割复杂结构的能力,而模糊逻辑可以减少特征表示的不确定性。因此,由模糊注意力层给出的深度注意力网络和模糊理论的整合应该是升级的解决方案。本文提出了一种有效的气道分割方法,包括一个新型的模糊注意力神经网络和全面的损失函数,以增强气道分割的空间连续性。深层模糊集由特征图中的一组体素和可学习的高斯成员功能制定。与现有的注意机制不同,所提出的特异性模糊注意力解决了不同渠道中异质特征的问题。此外,提出了一种新的评估指标来评估气道结构的连续性和完整性。该方法的效率已通过在包括精确的09和LIDC数据集在内的开放数据集上进行测试,以及我们的内部Covid-19和纤维化肺病数据集证明了这一建议的效率。
translated by 谷歌翻译